Consider an earlier switch for patients with intolerance and/or suboptimal response
Intolerance
—Moshe Talpaz, MD, University of Michigan, USA
Patients with intolerance may need a treatment switch
Even low-grade, chronic TKI intolerance can impact compliance with therapy, which in turn can lead to poor outcomes3,4
Failure to address TKI intolerance may negatively influence compliance of CML therapies.
- In a survey of patients with CML, nearly half of responders missed doses of their medication—mostly to reduce adverse events5
- In turn, lower compliance with therapy for CML may impact outcomes for patients3,6,7
Patients with lower compliance rates had:
- Significantly higher risk of suboptimal response (P=0.005)8
- Significantly lower rates of CCyR (P=0.004)8
Did you know?
Up to 25% of patients with CML discontinue therapy due to AEs.7,9-11
Many patients treated with 2L TKIs are still at higher risk of experiencing TKI intolerance.12-14
- This can happen despite management of treatment-related AEs with dose reductions, transient treatment interruptions, supportive care, and concomitant medications
Health care providers may have different perceptions of tolerability compared with patients and this disconnect can negatively impact patient care.15
Suboptimal Response
Patients who experience suboptimal response may need a different treatment strategy
—Jorge Cortes, MD, Georgia Cancer Center, USA
Assess patient scenarios and review guideline recommendations
Explore patient profilesAE, adverse event; ATP, adenosine 5’-triphosphate; CCyR, complete cytogenetic response; CML, chronic myeloid leukemia; EFS, event-free survival; MMR, major molecular response; TKI, tyrosine kinase inhibitor.
References: 1. Ongoren S, Eskazan AE, Suzan V, et al. Hematology. 2018;23(4):212-220. 2. Giles FJ, Abruzzese E, Rosti G, et al. Leukemia. 2010;24(7):1299-1301. 3. Marin D, Bazeos A, Mahon F-X, et al. J Clin Oncol. 2010;28(14):2381-2388. 4. Kim D-W, Saussele S, Williams LA, et al. Ann Hematol. 2018;97(8):1357-1367. 5. Eliasson L, Clifford S, Barber N, Marin D. Leuk Res. 2011;35(5):626-630. 6. Ibrahim AR, Eliasson L, Apperley JF, et al. Blood. 2011;117(14):3733-3736. 7. Hochhaus A, Baccarani M, Silver RT, et al. Leukemia. 2020;34(4):966-984. 8. Noens L, van Lierde M-A, De Brock R, et al. Blood. 2009;113(22):5401-5411. 9. Cortes JE, Kim D-W, Pinilla-Ibarz J, et al. Blood. 2018;132(4):393-404. 10. Cortes JE, Gambacorti-Passerini C, Deininger MW, et al. J Clin Oncol. 2018;36(3):231-237. 11. Hochhaus A, Saglio G, Hughes TP, et al. Leukemia. 2016;30(5):1044-1054. 12. Kantarjian HM, Giles FJ, Bhalla KN, et al. Blood. 2011;117(4):1141-1145. 13. Quintás-Cardama A, Kantarjian H, O'Brien S, et al. J Clin Oncol. 2007;25(25):3908-3914. 14. Kantarjian HM, Cortes JE, Kim D-W, et al. Blood. 2014;123(9):1309-1318. 15. Efficace F, Rosti G, Aaronson N, et al. Haematologica. 2014;99(4):788-793. 16. Khoury HJ, Cortes JE, Kantarjian HM, et al. Blood. 2012;119(15):3403-3411.